
N89-16339

AN ADA IMPLEIHENTATION FOR FAULT DETECTION,
ISOLATION AND RECONFIGURATION USING

A FAULT-TOLERANT PROCESSOR

Gregory L. G d e y

The Charlm Stark Draper Laboratory
666 Technology Square

Cambridge, Massachueetts, 02139 USA
(817) 268-2482

Abstract

This paper covers the design and implementation, in Ada, of the Fault Detection, Isolation
and Reconfiguration (FDIR) Manager for the triply redundant, tightly synchronized, Fault
Tolerant Processor 0. It also examines the suitability of Ada, in the context of the FTP, for
real time control tasks. This paper explains the operational concepts behind the FTP, and
discusses the structure of the resultant Ada code.

This W& iS SU- by NASA under JSC c ~ a t n c t Ne-17560.

Ada is a rcgisterea eade& of the U.S. Government (A& Joint Program oflice).
E. 2 .4 .1

1. Draper Laboratory’s Fault Tolerant Processor

1.1 Background
In April of 1983, the Charles Stark Draper Laboratory undertook the design and

construction of a “distributed, fault and damage tolerant, real time information processing
system” for aerospace vehicle control [21 [l l . This proof-of-concept system is known as the
Advanced Integrated Processing System (AIPS). The goal of the project is to make a fault
tolerant network of fault tolerant computers behave as a single highly reliable system. The AIPS
system is composed of several Fault Tolerant Processors that are linked together via two
networks: an inter-computer (IC) network, and an inputoutput (VO) network.

The inter-computer network is used for communication among the FTP’s. This network
allows the FTP’s to coordinate their actions and the division of tasks. The IC network is also used
to report errors and failure conditions. The UO network carries all input to and output from the
AIPS FTP’s. Thus, all sensors and actuators may be accessed by any FTP, and since F’TP’s are
not tied to specific UO devices, any FTP may run any UO dependent task. This flexibility was
built into AIPS so that tasks can “migrate” between FTP’s without concern about which specific
UO devices are attached to the individual FTP’s.

This paper concentrates on failure detection in the local FTP’s, and further discussion on
the operation of these two networks is beyond the scope of this paper.

1.2 The Fault Tolerant Processor

The AIPS Fault Tolerant Processor achieves a high level of reliability by using three
identical processing elements that perform identical operations on identical input. The FTP will
continue to operate correctly even after the failure of one of its channels, because data from the
two good channels will vote out and mask data from the faulty one. The design goal of the FTP is
to produce a fault tolerant virtual processor out of these three tightly synchronized channels.
Thus, the programmer who writes applications for the FTP does not have to worry about the fact
that there are actually three processing units that are continually voting all input and output. In
the Draper Fault Tolerant Processor, specialized hardware maintains synchronization and handles
communication between processing sites. This solution not only reduces the software overhead,
but, in fact, allows the FTP to be treated as a virtual processor. Because none of the instructions
in the user’s application software reveal the fact that the FTP is actually three processing units, it
is hoped that this virtual processor abstraction will reduce software cost and complexity in fault
tolerant systems.

Data exchanges, which are necessary both for communicating with the other channels and
for voting, are done by the hardware data exchange mechanism. Data is voted on a bit by bit
basis: the hardware compares each set of three bits and masks out any bit that disagrees with the
other two. If an error is detected, a hardware error latch is set, noting the type of exchange and
the channel(s) at fault. Fault detection is implemented by comparing the voters’ inputs and
outputs; fault isolation uses the pattern of errors latched by the voters. By supplying this fault
detection and masking in hardware, the FTP frees the software of this burden and helps provide
the virtual processor abstraction. These concepts of hardware implemented fault tolerance and
data exchanges have been successfully demonstrated in the Fault Tolerant Multi-Processor [4] at
Draper Laboratory, and the theoretical basis for this interconnection scheme’s protection against
Byzantine failures can be found in [71.

E.2 .4 .2 --

ORIGINAL PkGE IS
OF POOR QUALITY

1.3 Data Exchange Mechanism
The data exchange mechanism is the FTP’s primary means of correcting for failures. It

has been shown [6] that Triple Module Redundant (TMR) systems such as the FTP need two basic
types of data exchanges: a triplication and a direct vote. A triplication is used in the case where a
single channel has a local value, such as a sensor reading or keyboard input, that must be sent to
the other two channels. Since a direct transmission’s reliability is vulnerable to a single point
failure, the triplications are sent through the voters. A direct vote, on the other hand, is used in
the case where three channels have computed identical outputs, such as actuator commands or
terminal output, that must be voted to correct for errors before transmission.

Fault Tolerant Processor Data Exchange Mechanism
AoCbid is t i rmlW

a- -
Figure 1-1: FTP Data Exchange Mechanism

Figure 1-1 shows a schematic representation of the FIT’S data exchange mechanism.
Note that there are three major elements in the mechanism: the transmitters, the interstages, and
the receivers. These elements are connected in several different ways. First, each channel’s
transmitter has a bidirectional link to the other two channel’s transmitters. These links are used
for immediate access to raw data during triplication data exchanges. Second, each transmitter
has a link to its interstage. This link is used to send data to be latched by the interstage for
further re-transmission. Finally, each interstage has a link to each channel’s receiver. These links
are used by the interstages to send a copy of their data to each channel.

During an exchange, each of the elements in the data exchange mechanism has a different
function. The transmitters must configure their data paths so that the correct data is sent to the
interstages. Each transmitter may send either its own data or the data available on one of the
direct links from the other channels. The interstages must latch the data, tkiplicate it, and send a
separate copy to each of the three receivers. Finally, the receivers are responsible for latching and
voting the three copies of the data from the interstages. The bit by bit majority vote is done in

E . 2 . 4 . 3
- -

hardware, and the result will be stored in the receiver register. If there are any disagreements in
the voting, they are recorded in the voter’s error latches.

Each channel’s receiver has a 12-bit dedicated error latch. These twelve bits are divided
into three sets of four bits. Each set is used to record errors from a specific channel, and each bit
within a set is used to specify what type of exchange the error occurred in. direct vote or
triplicating from A, from B, or from C. Thus, if channel A’s voter discovers a disagreement in
channel B’s value while triplicating a value from C, i t will set a specific bit for that exchange in its
error latch. As more errors are discovered, more bits will be set, but none will be reset. Only a
specific command from the software can reset the bits in the error latches.

In their well-known paper on the Byzantine General’s problem [51 Lamport et aZ show that
three processors (meaning three fault containment regions) cannot reach agreement in the
presence of a fault. To surmount this problem, the FTP is divided into six fault containment
regions: the three channels and the three interstages. That is, each channel and interstage is
isolated (physically and electrically) so that a fault in one cannot cause a fault in another. This
fault containment guarantees that a single fault in the FTP cannot prevent the three channels
from reaching an agreement on the result of a vote. Thus, a channel or interstage may transmit
bad data due to a single fault, but the bad data will be masked out by the rest of the system,
which is fault free and generating correct data.

1.4 Use of the Data Exchange

A typical use for the data exchange mechanism would be a space craft control system
reading a sensor. For complete fault coverage, three sensors would be used to read the same
data, and each sensor would connect, through the UO network, to a specific channel. Each channel
would read a sensor and store, a local value. Then, one by one, the channels would triplicate their
local data by exchanging it with the other channels.

Figure 1-2 shows an example of channel A triplicating its local value via the data
exchange. Note that channel A sends its local value directly to channels B and C, which route the
data to their interstages. Then, all three channels initiate a vote on the raw data. The result of
this vote is used by the three channels as channel A’s value. This same procedure is then
repeated for channels B and C. This exchange process ensures that, even in the presence of a
failure, all three channels have an identical (although not necessarily correct) value for each
channel’s sensor reading. Thus, when this process is finished, each channel has three values that
are identical to the three values that the other two channels have. The code that initiates these
exchanges would be located in a library of UO subroutines. This library is used to hide the data
exchange mechanism from the user’s application, preventing the user software from violating the
abstraction of the FTP as a single processor. The following is an example of the code that
performs a data exchange. Note that this code is executed at the same time by all three
processors, giving each channel an A-value, a B-value, a C-value, and a local - value.

E . 2 . 4 . 4

iT
E
?

f
Q r r l A m n Q.r lC

Figure 1-2 A data exchange from channel A

After all three channels have the three sensor readings, some type of redundancy
algorithm (e.g., mid-value select) can be applied to these values to form a suitable result for the
sensor reading. This “correct” vdue for the sensor reading is then used to produce an actuator
command for maneuvering the space craft. Figure 1-3 shows the direct vote of this actuator
command. Each channel directly sends its value to its interstage. The interstages then triplicate
the data and send it to the receivers, which vote the resulta at3 before, noting any errors. Again,
this whole process would be hidden from the user’s application by a call to the FIT’S YO
subroutine library. The output subroutine is also fairly simple:

E . 2 . 4 . 5

M A M B M C

Figure 1-8 Direct vote of actuator command

ORIGINAL PAGE ES
OF POOR QUAiiTY

E . 2 . 4 . 6

2. Structure of the FDIR code

This chapter discusses the design of the FDIR software. The design of the FDIR code was
shaped by two main goals: provide complete fault coverage and use minimal processor overhead.
FDIR must be able to locate and isolate any fault that occurs, and this must be done while using
less that 5% of the processor’s capacity. As a result of these design goals, the FDIR code is split
into several tasks. The fast task can be run frequently, while the more complex tasks are run
only on demand or at a lower frequency. This division allows for complete fault coverage while
reducing the amount of processor time used.

In terms of software engineering, the design goals were to create FDIR code that is
modular and readable. Ada helps these goals with its data abstractions and its packages, which
are the advantages often cited when discussing the merits of the language [3J. Ada’s use of data
abstractions helps produce readable code by allowing programmers to manipulate data in a
conceptual manner rather than a manner specified by the machine’s representation of the data.
Ada also helps produce modular code by encapsulating programs in constructs called packages
which introduce these data abstractions. As a result, the FDIR code for the AIPS FTP has turned
out much more modular and readable than the FDIR code that was written for a previous FTP
using c.

The packages that comprise the FDIR software can be divided into four major categories:

1. Declarations
2. Resources
3. Extensions
4. Applications

2.1 Declarations

Declaration packages are collections of namings and constants that are used in many
sections of the FDIR software (as well as the rest of the operating system). The only example of
this type is Memory, the package that contains the mappings of all the special memory locations.
Memory defines the locations for the data exchange hardware, the shared memory objects, and all
the other hardware that is memory mapped, such as the timers and the Monitor Interlock.

2.2 Resources

Resource packages contain data types and operations that have general utility. For
example, all the necessary procedures and types for using the data exchange and voting
mechanism are defined in the Erchunge package. Any software that is run on the FTP will need
to vote input and output. The Erchnge package encapsulates the data exchange hardware with a
software abstraction so that all other software uses the voting mechanism without relying upon
any implementation details. This means that if the data exchange hardware changes, only one
package has to be changed to reflect the differences. Another resource package is the Emr-lrrtch
package, which defines a data type for fhe error latches as well as the operations necessary to
convert their hardware representation into a software defined Ada data type. Again, only one
package reiies upon the actual implementation of the hardware error latches, and only one
package would have to be changed if the error latches were changed. The two remaining resource
packages are Config and Transient. Both of these packages provide procedures, types, and

E . 2 . 4 . 7

variables that monitor the state and “health” of the FTP’s three channels. The C o n k package’s
primary responsibility is to maintain the software record of the three channels’ status: present or
lost. Tmnsient, on the other hand, is primarily responsible for maintaining an unreliability index
for each channel. Of all these resource packages, only Exchange would have a system-wide utility.
The other (non-FDIR) parts of the operating system, however, do require access to things such as
the error latches and the current configuration of the channels.

2.3 Extensions

Extension packages are used to actually extend the Ada language. Certain operations
(such as the bit wise AND of two integers) are either not permitted or difficult to implement in
Ada. Extension packages, which are series of assembly language subroutines that masquerade as
Ada packages, add this needed functionality to the standard language operations. The package
Memory utilities, for example, was created so bit wise AND and OR operations could be performed
on two%egers. Although Ada can actually do AND and OR operations on arrays of boolean
variables, the Telesoft compiler that produces the FTP code cannot pack a 16 boolean array into a
single word.

The second extension package, called Sync- utilities, was created for synchronizing code
execution among the channels. Synchronization requires absolute control over the timing of each
machine instruction. Assembly language code had to be used for the critical part of the
synchronization procedure to meet these strict timing requirements. The Sync-utilities package
also provides the procedure that aligns memory. The memory align could have been done in Ada,
but the time penalty for not using highly optimized assembly language code to align all of memory
was too great for the FTP, which is designed to be a real time system.

2.4 Applications

The F’DIR application packages use the resource, declaration, and the extension packages
to actually “do something.” These application packages do not define any new types. Instead, they
import types and low level procedures from the three other kinds of packages. In general, the
FDIR application packages have only a few visible procedures, which are mostly linear code. The
three application packages that make up the FDIR manager are: FDIR, which detects and isolates
all faults; Sync, which synchronizes the code execution initially and whenever a channel is lost;
and Test, which constantly runs self test on the FTP hardware.

The FDIR package contains the actual code for the local FDIR manager. It has only one
visible procedure, Init, which schedules a FDIR task to be run at a relatively high frequency
(approximately 16 Hz, or every 60 msec). This task, called Fast FDIR, is used to spot the
occurrence of errors and isolate only the most obvious faults. Both the channel presence and the
interstage tests are simple enough to be run at this relatively high frequency. Fast FDIR also
checks all reports from other parts of the system. If there are any necessary reco&urations,
Fast FDIR will do the reconfigurations in a prioritized order. This higher frequency of operation
improves reliability of the FTP by reducing the amount of time an error goes undetected. In
reducing this time, the window in which two errors could simultaneously occur is also reduced. A
second error, if it occurred before the FTP could reconfigure around the first error, would lead to
unpredictable results.

There are, however, the two competing goals for the FDIR manager: complete fault

E . 2 . 4 . 8

coverage, which demands high frequency, and minimal use of processor time, which demands
faster, less complex operations. Thus, the Fast-FDIR task cannot take the time to analyze all
possible fault conditions when an error is detected; it only analyzes the most simple cases. If
Fast FDIR encounters an error condition that it cannot analyze, then a new task is started, called
Slow- FDIR. Slow-FDIR is referred to as an “on demand” task. Fast FDIR will schedule it only
if there is an error that is too complex to analyze immediately. S Z O W - ~ I R will then fully analyze
the error and report back to Fast-FDZR which channel, if any, is at fault. This split in the fault
detection duties allows the FDIR manager to run quickly and often, fulfilling both goals.

There are three visible parts to the Sync package: Znif, a procedure which initially
synchronizes the code execution between the three channels; Lost-soul, a procedure which is
continually run by a lone lost channel; and Lost-soul-sync, a task which a pair of synchronized
channels will schedule (at a fairly low frequency) to find the third lost channel. These three pieces
of code do exactly the same thing: send “lost soul” data patterns through the data exchange
mechanism and wait for the electronic “echo” that indicates another channel was attempting to
exchange at the same time. All three, in fact, use the same assembly language subroutine for the
hardware interface.

The primary difference between these three operations is what they do once a channel is
synchronized, when they run, and how often they run. Znit runs only upon system initialization,
and assumes that all channels are unsynchronized at the start. After two or more channels are
synchronized, Init will reconfigure the internal FDIR records to match the new state of the
hardware. Where Init is linear code that is run only once, Lost-soul is a tight loop with only one
exit condition: synchronization. Any lone channel that needs to synchronize will run Lost-soul,
and nothing else, until it resynchronizes with the other two channels. Lost soul is run frequently
so that whenever the other two channels find time to try to pick up the &e processor, the lone
processor is waiting and ready to be picked up. The t o s t soul sync task, on the other hand, is a
shell that calls the Lost soul procedure. The difference with thy task is that the two channels (in
synchronization) will c a Lost-soul at a lower frequency. Also, when two or more channels
execute Lost soul, they only go once through the loop and exit. Thus, the Lost soul-sync task
can be sched&d to run at a low frequency and will only take a small amount of &e to execute.

The third application package is Test, which contains the four FDIR self tests: voter and
error latch, which verifies the voting mechanism; ROM sum, which checks the integrity of the
FTP’s ROM; RAM pattern, which tests the functionality of each RAM location; and RAM scrub, which
ensures that all three channels have identical values in RAM. Test, like the FDIR package, has
only one visible procedure, System test. System test calls each individual test in the appropriate
order. Thus, the voters are test&-before anylnemory values are exchanged, and the memory
hardware is tested by the RAM pattern test before the memory contents are checked by the RAM
scrub test. If any one of the four tests reports that there is a faulty channel, then System test
will stop and notify Fast FDIR that a reconfiguration is required. System test is called by a x s k
in the FDIR package c z d Selfdest. Seytest is scheduled to run at a low5riority. Thus, if the
processor has any free time, it will run some self tests.

3. The Suitability of Ada for the FIT

While developing the fault detection code for the FaulbTolerant Processor, both the
advantages and the disadvantages of using Ada were apparent. In general, the advantages of
Ada, which are mostly due to the language specification, outweigh the disadvantages, which are
mostly due to the compiler used for this project. This chapter discusses both the advantages and
disadvantages of using Ada for the FTP, and why using Ada was, in the long run, a wise choice.

The choice of Ada as the development language was a controversial decision. Previous
work on fault-tolerant processors at the Laboratory had been done in the C language, and using C
would have saved the many man hours spent re-creating code that had already been written.
Using C would have also meant that the software engineers would have had a familiar set of tools
available to use (e.g., compilers, debuggers, etc.). But, there are two major reasons that led to the
selection of Ada as the development language for the AIPS system. The fvst is the Department of
Defense’s requirement that Ada be used for military software. The second reason is Ada’s tasking,
exception handling, strong typing system, and enforced modularity that are widely touted in some
circles 131. The combination of these reasons led the original design team to specify that Ada
would be used for the AIPS project. After almost a year of F’DIR code development, the choice of
Ada is st i l l controversial.

3.1 Disadvantages

The main disadvantage of Ada is that it is an immature language. There are only a
handful of fully validated compilers and few support tools for programmers. The compiler used for
the AIPS FTP (the unpublished Telesoft Ada compiler version 1.5) has several specific
shortcomings: the Run-Time System is inadequate for the FTP’s requirements as a real-time
system, the compiler produces inefficient code and is not a fully implemented version of Ada, and
there are no debugging tools. Solving some of the problems associated with this system required a
great deal of effort that would not have been expended if Ada were a more mature language.

The primary problem with the Telesoft Ada compiler is the Run-Time System’s task
scheduling mechanism. For a real-time control system such as the FTP, task scheduling is
critical, and the firsbin, firet-out task queue supplied with the Telesoft system could not meet the
strict timing requirements of a real-time system. Task priorities and interrupts are needed so that
a minor task (such as a self test) would not prevent a critical task (such as Fast FDIR) from
running. After much work, Draper Labs developed a system of priorities and intemyts that were
incorporated into the Telesoft Run-Time System. This new run-time system allows higher priority
tasks to interrupt the operation of those with a lower priority and includes timing information that
specifies the frequency at which a task should be scheduled. Unfortunately, the run-time system’s
size (approximately 48K bytes) is almost an order of magnitude larger than the operating system
used for the C version of the FTP. Although the Telesoft Run-Time System code has more
functionality than the C version’s operating system, it is not clear that these features are needed
for a real-time system. With this new run-time system, Ada’s task scheduling could fulfill the
FTF”s requirements for real-time vehicle control.

Not only is the Telesoft Ada Run-Time System larger, but the size of the object code
generated by the Telesoft Ada compiler was surprisingly large as well. In fact, the FTP system
had to be redesigned to include one megabyte of RAM rather than the original 256K bytes, which
would have been sufficient had this code been written in C. This increased code size has several
sources: the immature compiler, which generates inefficient code, the code design, which can add

E. 2.4,lO -

to the compiler’s inefficient code generation, and the required Ada runtime overhead, such as
range and exception checks. Better compilers will, of course, help this problem. However, Ada
rarely produces code as efficient as C, just as C rarely produces code as efficient as assembly
language. Fortunately, the FDIR code has not exceeded the original C language size by any large
amount, and the Fast - FDIR task is still within the 5% processor capacity goal.

Because the Telesoft Ada compiler is not a fully implemented version of Ada, some coding
problems must be resolved in awkward ways. For example, the representation for the error
latches would logically be an array or record of boolean types. The Telesoft compiler, however,
does not allow the representation of an Ada record or array to be specified on a bit-by-bit basis:
Thus, when the data type for an error latch was defined, Telesoft Ada could not define a record
that matched the 12-bit structure and location of the actual error latches. But, because the error
latches had to be exchanged among the channels as 16-bit integers, a standard record or array
could not be used either. Thus, the FDIR code used a function that converts the hardware error
latches into patterns that fit a 16-bit integer. Unfortunately, this sacrifices one of the primary
advantages of the Ada language: its ability to easily create data abstractions from built-in types.
Other problems with the Telesoft compiler were along the same vein: problems that were irritating
because hardware representations could not be mapped to data abstractions with the ease that
Ada promised, and solutions that were difficult to use in Ada because they did not take advantage
of the built-in types and functions.

Finally, the fourth problem with the Telesoft compiler is the total lack of debugging aids.
In terms of debugging tools, a disassemblel: is absolutely required. Thus, the Laboratory had to
produce, in house, a disassembler for the FTP’s 68010 code. A VAX interface program, which
implements standard debugging utilities (e.g., breakpoints, memory and register displays, and
program downloads), was also produced in house. Unlike the C compiler that was previously used,
the Ada compiler could not produce assembly language listings of the code that have the original
Ada statements inserted in the appropriate places. This was a major drawback because all
matches between the disassembled object code and the original source code had to be done
manually. The lack of debugging aids requires that effort be diverted from software development
to debugging tool development, which is not the purpose of this project.

3.2 Advantages
On the other hand, the advantages of Ada are due largely to the language definition rather

than the specific compiler. The strong typing system, for instance, allows code written by several
individuals to be linked together with almost no errors. Also, Ada’s package system fosters a
highiy modular design that clearly delineates all module dependencies, while the data abstraction
capability makes it easier to create readable code: Finally, although the run-time system was not
adequate at first, the Ada built-in tasking construct is useful because the FTP needs multi-
processing capability.

Ada’s rigid syntax and strong typing system, which are hated by some programmers, are
responsible for reducing errors in software to the point that almost any program that compiles will
run, and will have almost no errors. The syntax is responsible for reducing the number of
typographical mistakes that are accepted by the compiler as legitimate code. The strong typing
system, meanwhile, reduces the number of errors due to interfacing procedures and data
abstractions. And, because the structure and syntax of Ada lets fewer errors slip past the
compiler, Ada reduces the time spent debugging code.

Ada’s data abstractions are a powerful force in making code that is readable and has a
well defined interface. In C, for example, the configuration of the three channels (on- or off-line)
was numerically represented as three bits in a 16-bit word. The representation of the data, as
well as the operations performed on it, are not conceptually obvious. Ada, on the other hand,
represents the configuration as a record of three booleans. Using booleans in a record to represent
the configuration produces more readable code that parallels the actual structure of the
information. This abstraction also reduces the mistakes and confusion between programmers who
must interface code. In C, there was a convention that channel A was represented by the low
order bit in a 16-bit integer. This convention, however, is not as obvious as a record with a boolean
component named A. Again, Ada’s data abstractions prevent these types of interfacing errors
from occurring, and thereby cut the time required to debug software.

Overall, Ada is the right language for this project. The Ada language has several strong
advantages, while most of the disadvantages are due to its immaturity and the specific compiler
used. In time, the language will mature and more capable compilers will be available. However,
even a poor version of Ada has already decreased the work required to create, debug, and
interface the code on the FTP.

The decision to switch to Ada was controversial. Despite the advantages of Ada’s tasking,
data abstraction, and modularity, many engineers were concerned about Ada’s immaturity and
lack of debugging tools. Even more important, however, was the run time environment and its
ability to meet the critical timing requirements of a real time control system. In spite of these
problems, the development of the FDIR manager has shown that Ada has promise as a
development language for embedded computer systems.

E. 2.4.12

I /

References

[13 Charles Stark Draper Laboratory.
Advanced Infinnation Pmessing System (AIPS) System Specificcrtion
Technical Report CSDEC-5709, Charles Stark Draper Laboratory, Inc., Cambridge,

Massachusetts, May, 1984.

[21 Alger, Linda, et aL
Local Fault Detection, Isolation, and Reconfiguration in a Distributed Processing System.
December, 1985.

[31 Barnes, J. G. P.
Progmmming in Ada.
Addison-Wesley Publishing Co., 1982.

Hopkins, Albert L., Smith, T. Basil, and Lala, Jaynarayan H.
FTMP -- A Highly Reliable Fault-Tolerant Multiprocessor for Aircraft.
Proceedings of the IEEE 66(10): 1221-1239, October, 1978.

[41

[51 Lamport, Leslie, et aL
The Byzantine Generals Problem.
ACM Transactions on Progmmming Languages and Systems 4(3):382-401, July, 1982.

[SI Smith, T. Basil.
Generic Data Manipulative Primitives of Synchronous Fault-Tolemnt Computer System.
Technical Report, Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts,

1980.

[71 Smith, T. Basil.
Fault-ToLmnt Processor Concepts and Operation
Technical Report, Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts,

1981.

